Growth of the amount of data, data sources and analysis possibilities ensure that there are also multiple possibilities for storing and processing data. All kinds of concepts are on the table - such as Data Lake, Data Hub, Data Warehouse and Data Platform. A Gartner study has shown that demand for Data Hubs increased by 20% between 2018 and 2019. Interestingly, Gartner noted that more than 25% of customers thought that a Data Hub was a Data Lake solution[1]. Gartner's research illustrates how much confusion there is about what the different concepts entail. In practice, we also notice that there is a great deal of ambiguity; so how do the concepts differ from each other? This blog provides more clarity on the meaning of these terms.
(Un)Structured data?
In addition, a data hub provides organizations with insight to be able to interpret data properly. Because if you understand what you're looking at, it becomes easier to ensure the accuracy of data or adjust it where necessary. You can literally see how datasets are constructed up to the column and row level. Moreover, you can comply with laws and regulations, because you know exactly who has access to what data and where data is stored. The data in a data hub is not necessarily integrated and can contain different levels of detail side by side as opposed to a Data Warehouse. Set against a data lake, a data hub can offer data in different formats. Where data warehouses and data lakes are endpoints for data, a data hub is a node through which data flows.
A data platform, also known as data management platform, is an integrated solution that combines the functionalities of data lake, data warehouse, data hub and elements of a Business Intelligence (BI) Platform. Without a data platform, a separate tool or set of tools is usually used for each aspect. This creates a complex landscape where many tools need to be managed to make data flow from source to end user. A data platform centralizes these solutions in one tool and thus delivers a product that is a lot more manageable.
Schema on read/write?
The huge increase in data sources and volume and the different data needs of different users pose significant problems for BI/IT departments and others engaged in data for analytics, artificial intelligence (AI) and BI. Organizations use a variety of tools to process and manage data. There's another way. This is why E-mergo has chosen to partner with TimeXtender. The TimeXtender platform provides a cohesive data structure for on-premise technology and cloud. This allows you to connect to different data sources and catalog, model, move, and document data for analytics and AI purposes.
TimeXtender wants to change the traditional way of BI development by repeatedly automating work. When building a traditional data platform, there is a lot of repetitive and time-consuming work. With TimeXtender, you can make the transition to an integrated data platform that delivers data insights 5 to 10 times faster thanks to automation. This allows you to save up to 80% on management and develop 70% faster.
[1] https://www.gartner.com/en/documents/3980938
This blog post first appeared on the E-mergo website.
Want to know more about TimeXtender from E-mergo? Watch the platform in action during one of E-mergo's live demos via Microsoft Teams or check out one of their other resources.